
Eur. Phys. J. B 22, 461–471 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The magnetic phase diagram of the Fe2+ doped hexagonal ABX3 compound CsNi0.9Fe0.1Cl3 is
investigated by heat capacity and magnetocaloric experiments. In spite of the high doping concentration,
some phase boundaries appear surprisingly well-defined, while others are broadened significantly. The
discussion of this behaviour clarifies the potentials and limitations of doping as a means to manipulate the
effective anisotropy in quasi one-dimensional ABX3 compounds.

PACS. 75.30.Sg Magnetocaloric effect, magnetic cooling – 75.30.Kz Magnetic phase boundaries

1 Introduction

Hexagonal ABX3 compounds have been studied intensely
both with respect to quasi one-dimensional properties and
with respect to frustrated antiferromagnetic interactions
on a triangular lattice. In these compounds A stands for an
alkali ion, B is a divalent transition metal ion and carries
the localized magnetic moment, and X is a halogen ion.
The magnetic B ions are strongly coupled along the hexag-
onal c-direction by three equivalent superexchange paths
each involving one halogen ion. The superexchange paths
in the hexagonal ab-plane involve two halogen ions and are
weaker by at least one order of magnitude. The magnetic
behaviour is usually modeled by the Hamiltonian

H = 2J
intra∑
i

SiSi+1 + 2J ′
inter∑
i6=j

SiSj +D
∑
i

(Szi )2

− gµBH
∑
i

Si (1)

where 2J denotes the exchange per bond along the chain
direction c, 2J ′ the effective interchain exchange per bond
in the ab-plane, D the uniaxial single-ion crystal-field
anisotropy and H = B/µ0 the applied magnetic field. The
sign of D determines the preferred direction of the spins
relative to the crystal axes. For D < 0 the anisotropy en-
ergy is minimized with the spins along the z(c)-direction
(Ising anisotropy), for D > 0 the spins prefer an align-
ment in the ab-plane (easy-plane anisotropy). Due to
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the frustrated antiferromagnetic interchain interaction J ′,
the topology of the B-T phase diagram depends sensi-
tively on D. Upon variation of D, at least six different
types of B-T diagrams are expected, for strong and weak
Ising anisotropy, Heisenberg behaviour, weak, medium
and strong easy-plane anisotropy. Most of these are re-
alized by one or the other ABX3 compound [1].

Doping of weakly anisotropic compounds with another
magnetic ion has been proposed as a means to modify the
anisotropy in a controlled way [2]. Here we investigate
Fe2+-doped CsNiCl3, where the strong easy-plane type
single-ion anisotropy of the Fe2+ competes with the weak
Ising anisotropy of the Ni2+. CsNiCl3 has antiferromag-
netic exchange J > 0 along the hexagonal axis, CsFeCl3
ferromagnetic J < 0. In both compounds the interchain
interaction is antiferromagnetic, J ′ > 0.

If there was no single-ion anisotropy D, the low-tem-
perature phase of CsNiCl3 would be a six-sublattice anti-
ferromagnetic structure, where the spins within one chain
order antiparallel, and the magnetic moment on a trian-
gle in the ab-plane is cancelled with neighbouring spins
including an angle of 120◦ (helix phase H). Due to the
weak Ising anisotropy of CsNiCl3, the spins order paral-
lel to an ac-plane and the angle between adjacent spins
in the ab-plane slightly deviates from 120◦. This distorted
helix structure is also abbreviated H. Two phase transi-
tions in zero magnetic field are observed, paramagnetic-
intermediate (P-I) and intermediate-distorted helix (I-H),
corresponding to the onset of long-range order of the spin
components parallel (P-I) and perpendicular to c (I-H).
With a field applied along the c-axis, the Ising anisotropy
is effectively reduced and finally cancelled at the spin-flop
transition, where the spins flip to a 120◦-structure in the
ab-plane, with a uniform tilt towards the magnetic field.
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Fig. 1. Schematic phase diagrams of stacked triangular antiferromagnets with different single-ion anisotropies and magnetic
field B = µ0H ⊥ c. a) Weak Ising anisotropy D < 0. b) Weak easy-plane anisotropy 0 < D/3J ′ < 1. c) Medium easy-plane
anisotropy D/3J ′ > 1. With large easy-plane anisotropy (D large compared to J, J ′), there is no ordered phase for this field
direction. H: distorted helix phase, I: intermediate phase, P: paramagnetic phase, U: umbrella phase, F: fan phase, cf. text.

With the field perpendicular to c, there are always two
phase transitions. Figure 1a displays this type of phase
diagram schematically.

The very large easy-plane single-ion anisotropy of
CsFeCl3 leads to suppression of long-range order at zero
field. Above a critical field Bc along the symmetry axis c,
a transition into a long-range ordered phase is observed,
while for B ⊥ c no ordering can be found.

Antiferromagnets with a medium easy-plane
anisotropy as CsMnBr3 have one single phase tran-
sition P-H into a 120◦-structure H at both zero field
and fields applied parallel to the symmetry axis. With
a magnetic field in the easy plane (B ⊥ c), the easy-
plane anisotropy prevents an easy alignment of the
120◦-structure perpendicular to the magnetic field, and
an intermediate fan phase F emerges (Fig. 1c). In the F
phase, the easy-plane anisotropy D effectively overcomes
the antiferromagnetic interchain interaction J ′, so that
all spins remain in the easy plane. Two spins on a triangle
become parallel, the third antiparallel (apart from a small
canting of all spins towards the applied field). At lower
temperatures, with B ⊥ c, a distorted helix structure H
is entered.

With weak easy-plane anisotropy, 0 < D/3J ′ < 1,
there is one single phase transition for B‖c as in the
medium anisotropy case. However, three ordered magnetic
phases are predicted for B ⊥ c [3–5] (Fig. 1b). At low mag-
netic fields, the H phase is reached through an interme-
diate phase F as with medium easy-plane anisotropy. Be-
yond a critical field, however, the low-temperature struc-
ture is a so-called umbrella phase U. Here the spins on a
triangle orient almost perpendicular to the magnetic field
with one spin in the easy-plane, while the two other spins
include an angle with the easy-plane. This resembles a
distorted 120◦ structure perpendicular to the easy plane,
which satisfies the interchain exchange better than the fan
structure and therefore is the stable phase at larger val-
ues of the order parameter. The tilt angle of two spins
on a triangle out of the easy plane depends on the ratio
D/J ′ and so does the U-F transition temperature. This
case of weak easy-plane anisotropy has not been observed
on pure ABX3 compounds. However, the phase diagram
of CsNi0.98Fe0.02Cl3 with B ⊥ c displays the topology of
the weak easy anisotropy case [6,7], with three magnetic

phases, markedly different from the medium anisotropy
case realized by CsMnBr3.

In spite of the frustrated interchain interactions
and the doping, the phase transitions observed on
CsNi0.98Fe0.02Cl3 are rather well-developed and only the
field-dependent transition H-U displays some broaden-
ing [6]. Here we present an investigation of the compound
with five times larger doping, CsNi0.9Fe0.1Cl3, by specific
heat capacity and ac magnetocaloric techniques with the
magnetic field applied perpendicular to c. The two meth-
ods can be applied with the same experimental equipment.
Their combination turns out to be an effective tool for the
exploration of phase diagrams. It is the aim of this study
to investigate how far the tuning of the anisotropy can
be driven by a five times larger doping with Fe2+. As
0.034 < D/3J ′ < 0.23 was found for the 2% doped sam-
ple [6], the ratio D/3J ′ of the 10% compound might al-
ready exceed the critical value of 1, thus leading to a phase
diagram of the medium-anisotropy case as in CsMnBr3.
On the other hand, the higher doped sample might show
more pronounced traces of disorder, up to the complete
destruction of phase transitions.

Our experiments of the 10% sample reveal a phase di-
agram very similar to the 2% compound, with the general
topology of the weak-anisotropy case. However, we observe
several surprising qualitative differences. The discussion of
these differences leads to a microscopic model which not
only explains consistently all observed features, but also
illuminates the potentials and limitations of doping as a
means to control the anisotropy in ABX3 compounds.

2 Experimental

The experimental setup for the calorimetric measure-
ments consists of a sapphire sample holder of dimension
10 × 10 × 0.2 mm3 which is suspended from four nylon-
filaments in a copper frame. The temperature of the cop-
per frame can be controlled to ∆T/T = 10−5. One side of
the sample holder carries a Cernox thin film thermometer
and a sputtered Au heater. The sample is attached to the
other side of the sapphire plate by Apiezon N grease. The
thoroughly heatsunk electrical connections to heater and
thermometer establish a (weak) thermal link to the cop-
per frame which serves as an accurately controlled thermal
bath. This arrangement is vacuum shielded and placed in
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the VTI of a 12 T-cryomagnet. A detailed description of
the apparatus can be found in [8]. Using this experimen-
tal setup both the specific heat capacity and the magne-
tocaloric measurements were performed.

For the specific heat capacity two different mea-
surement processes were employed. The B-T phase dia-
gram was determined by the very fast continuous cooling
method [9]. For a quantitative analysis we used the quasi-
adiabatic heat pulse method.

The investigated crystal of CsNi0.9Fe0.1Cl3 had a mass
of 38.34 mg.

The magnetocaloric effect θH (MCE) is defined as
the adiabatic change of the temperature of a magne-
tized material upon variation of an external magnetic field
(H = B/µ0).

θH ≡
dT (H,S)

dH

∣∣∣∣∣
S= const.

= −
(
∂S

∂H

)
T

/(
∂S

∂T

)
H

= − T

CH

(
∂M

∂T

)
H

. (2)

As the specific heat capacity is always positive, the
MCE changes sign with

(
∂M
∂T

)
H

. It is positive for a
standard paramagnetic or ferromagnetic material where(
∂M
∂T

)
H
< 0 and an increase of the magnetic field causes

heating. It is negative for a simple antiferromagnet, where(
∂M
∂T

)
H
> 0 and an increase of the magnetic field causes

cooling. The MCE can be measured by sweeping a mag-
netic field and simultaneously detecting the temperature
change of the sample. In order to assure adiabatic condi-
tions, it is necessary to use a sufficiently fast sweep rate
such that the temperature change cannot drain into the
heat bath. However, due to numerous relaxation processes
in the experimental setup it is difficult to accurately de-
termine the MCE as a function of the sample tempera-
ture and magnetic field with this quasi-static method. This
problem of temperature relaxation can be solved with the
ac-method innovated by Fischer et al. [10]. In this dynamic
technique a small sinusoidal modulation is added to the
static external field B0,

Bext(t) = B0 +∆B sin(2πνt), (3)

and the resulting periodic temperature change ∆T is de-
tected

T (t) = T0 +∆T sin(2πνt+ φ). (4)

The low thermal conductance between sample holder and
heat bath and the small heat capacity of the sample holder
assure a minimal attenuation of the magnetocaloric effect.
For our setup, the modulation frequency of ν = 0.05 Hz
and the modulation amplitude of ∆B = 0.05 T proved
most appropriate. At higher frequencies, the amplitude of
the temperature oscillations ∆T is dampened by inter-
nal relaxation (sample-sample holder relaxation and spin-
lattice relaxation), at lower frequencies it is reduced by the
sample-bath relaxation. The small observed phase shift
φ between the periodically modulated magnetic field and

the temperature oscillations can be attributed to inter-
nal relaxation. ∆T was checked to be proportional to the
magnetic field amplitude ∆B. The present choice of ∆B
assures a reasonable signal-to-noise ratio while keeping the
deviation from the applied field as small as possible. Too
large deviations from B0 may become problematic in the
vicinity of a phase boundary where the MCE itself displays
large changes with the magnetic field. It should be noted,
that the quantity measured here, θ∗H = ∆T

∆B , corresponds
to the difference quotient, due to the finite rather than
infinitesimal value of ∆B. In spite of the careful choice
of ν and ∆B, the absolute value of θ∗H is still affected by
damping due to the heat capacity of the sample holder and
the temperature sensor, as well as the relaxation processes
mentioned above. Nonetheless, the measurement of rela-
tive changes of θ∗H is perfectly suited to determine phase
transitions. In particular, phase boundaries which are par-
allel to the temperature axis are easily detected, while they
appear smeared out or are invisible in a specific heat ca-
pacity experiment.

Here we combine magnetocaloric and specific heat
experiments to determine the phase diagram of
CsNi0.9Fe0.1Cl3. The experiments have been performed
with the magnetic field applied in the ab-plane, within the
cleavage plane. Assuming that the doped samples cleave
in the same way as pure CsNiCl3, the field is parallel to a
crystallographic a-direction. With our experimental setup,
the accurate orientation with respect to the magnetic field
could not be controlled – however, the angle of the field
within the ab-plane is expected to be entirely unimpor-
tant and slight deviations of the 90◦ angle between c-axis
and magnetic field should not be crucial. We estimate that
both angles are correct within a few degrees.

3 Results

Specific heat results obtained with the continuous cooling
method at different magnetic fields are shown in Figure 2.
The phase transition P-F from the paramagnetic into a
first ordered phase is clearly visible and forms a pro-
nounced anomaly which moves first to slightly lower and
then to higher temperatures with increasing magnetic
field. Towards the highest magnetic fields this anomaly
sharpens significantly. Below the P-F anomaly, a second
rather broad maximum is seen at low fields, moving to
lower temperatures with increasing field and then vanish-
ing. At higher fields, a broad maximum below the sharp
phase transition anomaly is observed anew, moving to-
wards higher temperature as the field increases. We iden-
tify the broad maximum at low fields with the F-H phase
transition, that in the high-field region as the F-U transi-
tion. At zero field we observe a shoulder at the high-tem-
perature wing of the main anomaly which develops into
the sharp feature identified as the P-F transition at higher
field. This shoulder is even better resolved in measure-
ments with the quasi-adiabatic method, Figure 3. Hence
the zero-field phase transition appears to be slightly split.
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Fig. 2. Heat capacity of CsNi0.9Fe0.1Cl3 at different magnetic fields B ⊥ c. The heat capacity is measured by the continuous
cooling method and has arbitrary units. A polynomial fit to the zero field curve, excluding the critical region, was subtracted
from the data. The left panel shows magnetic fields from 0 to 3 T, the right panel from 3 to 12 T. All curves are displaced
vertically.

Fig. 3. Specific heat capacity of CsNi0.9Fe0.1Cl3 at zero field
(full circles) and 1 T (open circles), measured with the quasi-
adiabatic method. The shoulder in the zero-field peak indicates
a splitting of the zero-field transition.

The width and close separation of the phase transitions
does not allow a systematic determination of the critical
behaviour. We tried nevertheless to quantify the apparent
narrowing of the P-F transition. A Gaussian distribution
of transition temperatures convoluted with a power law
divergence was fitted to the data at 3 T and 12 T. In spite
of large error bars for the critical behaviour, the Gaussian
width of the transition can be determined reliably, yielding
σ = 0.11±0.02 K at 3 T and σ = 0.04±0.01 K at 12 T. A
similar sharpening had been observed for the single phase
transition of CsNi0.98Fe0.02Cl3 with B ‖ c [7].

Figure 4 displays an overview of the magnetocaloric ef-
fect versus magnetic field and temperature. Figure 5 col-

Fig. 4. 3D plot of θ∗H for CsNi0.9Fe0.1Cl3.

lects several field scans at representative temperatures.
Figure 6 contains temperature scans at selected fields. In
order to be able to assign phase transitions to the anoma-
lies of the MCE, we collect distinct features from all three
figures and compare them, where possible, to heat capac-
ity results:

i) A pronounced “canyon” is evident in Figure 4, visible
as a minimum in the field scans of Figure 5. Figure 5
reveals, that upon increasing magnetic field across
this canyon, a region of negative decreasing MCE is
succeeded by an increase and a change of curvature
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Fig. 5. Magnetocaloric effect of CsNi0.9Fe0.1Cl3 versus the
external magnetic field at 2.0 K (stars), 3.6 K (open squares),
4.2 K (full circles). The inset shows MCE at 6.0 K (open tri-
angles).

Fig. 6. Temperature dependence of the magnetocaloric effect
of CsNi0.9Fe0.1Cl3 at different magnetic fields. ↓F-P indicates
the location of the specific heat maximum at the phase transi-
tion between paramagnetic and fan phase.

towards positive values of θ∗H . This inflection point in
the increasing slope can be followed from lowest tem-
peratures up to about 5 K. It shifts towards lower mag-
netic fields at higher temperatures (Fig. 5) and coin-
cides with the lower of the two maxima in the specific
heat capacity at low fields, as long as the specific heat
maximum can be followed. Therefore we attribute the
inflection point of the MCE to the boundary of the
H phase. This phase boundary turns out to be almost
parallel to the temperature axis at low temperatures.
This fact is at least partly responsible for the weak and
broad appearance of the corresponding specific heat
anomaly. The combination of field-dependent magne-
tocaloric effect and specific heat capacity experiments
proves to be most effective for the determination of
this phase boundary.

ii) The large heat capacity anomaly which indicates the
P-F phase boundary coincides with a clearly visible
kink anomaly in the θ∗H(H) curves in Figures 4 and 6.
The specific heat anomaly at the P-F transition is
marked by ↓F-P in the temperature dependent MCE-
curves of Figure 6. There is no doubt that a conven-
tional heat capacity experiment is best suited to deter-
mine a B-T phase boundary with such a steep slope.
However, it is worth noting that the phase transition
also leads to a clear feature in the temperature depen-
dence of the MCE.

iii) A flat plateau at high magnetic field strength and low-
est temperatures (see Fig. 4) is followed by a wide de-
scent towards higher temperatures. The descent ends
in a “valley” parallel to the kink which indicates the
P-F phase boundary. A thorough comparison of the
second broad specific heat maximum at fields above
3 T, identified as the F-U transition, shows that the
extension of the specific heat anomaly covers the wide
descent of the MCE from the plateau towards the val-
ley at higher temperatures. We interpret the broad fea-
tures in both types of experiments as a far-flung broad-
ening of the phase boundary between fan and umbrella
phase. Again it is the specific heat capacity rather than
a temperature dependent MCE experiment which re-
liably defines the onset of the F-U phase transition
at higher magnetic fields, where the phase boundary is
steep. However, the corresponding feature is located in
the MCE measurements and can be traced along arbi-
traryB(T ) lines, into those regions of the B-T diagram
where the specific heat capacity does not disclose the
boundaries. The MCE in Figure 4 reveals that the F-U
transition region surrounds the U phase between 3 T
and 4 T. It also indicates the boundary of the transi-
tion region towards the pure U phase, identified as the
plateau.

Some additional observations concern the sign of the
MCE which is directly connected to the sign of ∂M/∂T
through equation (2). We first review ∂M/∂T in related
ABX3 compounds. Close to the phase transition between
paramagnetic and ordered phases, CsNiCl3 [20] as well as
CsNi0.98Fe0.02Cl3 [19] and CsMnBr3 [21] or CsVBr3 [22]
have a positive ∂M/∂T in the P phase, and hence the P
phase is characterized by a negative θH close to the phase
transition. This is a consequence of the one-dimensional
antiferromagnetic short-range order in these compounds
which is already well developed far above the phase transi-
tion. The H phase in CsMnBr3 [21], CsVBr3, RbVBr3 [22]
has positive ∂M/∂T . The F phase shows ∂M/∂T < 0 in
CsMnBr3, CsVBr3, RbVBr3 [21,22], however, ∂M/∂T is
again very small in the F phase of CsNi0.98Fe0.02Cl3 [19]. It
is not clear whether or not ∂M/∂T may even change sign
in this phase. In the temperature region of the U phase, the
magnetization slope ∂M/∂T < 0 of CsNi0.98Fe0.02Cl3 [19]
is clearly negative, as in the structurally similar spin-flop
phase in CsNiCl3. From the comparison with these related
ABX3 structures we may expect a negative θ∗H in the P
phase and a positive θ∗H in the U phase of CsNi0.9Fe0.1Cl3.
In the H and F phases, θ∗H is expected to be small.
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Fig. 7. (a) Phase diagram of CsNi0.9Fe0.1Cl3. Filled symbols mark MCE measurements, open symbols measurements of specific
heat capacity. (b) Phase diagrams of CsNi0.9Fe0.1Cl3 (solid line) and CsNi0.98Fe0.02Cl3 (dotted line, determined using MCE
from [7]), scaled by TN and Bc, respectively. The shaded areas indicate the transition regions. For the U-F transition region,
the boundaries are explicitly marked by begin and end of the decrease of the MCE as stated in the text.

Indeed CsNi0.9Fe0.1Cl3, in a wide region of the P phase
at higher magnetic fields, displays a negative MCE, cf. the
6 K-curve in Figure 5. The negative θ∗H < 0 and hence
positive ∂M/∂T > 0 are in agreement with the expected
one-dimensional antiferromagnetic short-range order. At
lowest magnetic fields in the P phase, the MCE becomes
positive (Fig. 5).

In accordance with the considerations above, the MCE
plateau at high fields and low temperatures which is iden-
tified as the U phase has positive sign, and in the fan phase
a very small MCE is observed (Figs. 4, 5).

Somewhat unexpected is the observed change of sign
of the MCE within the H phase, towards positive values at
lowest temperatures (cf. the low-field region of the curves
at 2 K and those at higher temperatures in Fig. 5 and the
low-field low-temperature region in Fig. 4).

The resulting phase diagram is shown in Figure 7. It
has the same topology as that of the compound doped
with 2% Fe, demonstrating 0 < D/3J ′ < 1. The fan phase
extends to much lower temperatures as for 2% doping.
The H-U transition takes place at a higher magnetic field,
Bc = (3.6±0.4) T at 2 K, cf. (2.3±0.5) T at 3.6 K with 2%
doping. The phase transition(s) at zero field, TN1 = 5.3 K
and TN2 = 5.1 K, occur at a higher temperature than in
the pure compound (TN1 = 4.8 K and TN2 = 4.4 K) and
the 2% Fe-doped compound (4.64 K). Contrary to the 2%
compound, the fan phase seems to have a finite width at
zero field.

Some information on the intrachain exchange constant
J is provided by the low-temperature part of the spe-
cific heat capacity. Antiferromagnetic Heisenberg chains
with a linear dispersion of the magnetic excitations con-
tribute linearly to the low-temperature specific heat ca-
pacity, C/R = κkBT/|J | [11–15]. For spin 1, there is an
excitation gap between the ground state and all magnetic
excitations, the Haldane gap. Nevertheless, the calcula-
tions for finite chains demonstrate that the low-tempera-
ture specific heat capacity can still be approximated by a
linear relation [13]. The predicted values of κ range from
0.108 to 0.28. Figure 8 presents the low-temperature spe-
cific heat capacity at zero field plotted as C/T vs. T 2. A
linear contribution for temperatures above TN is obvious.

Fig. 8. Specific heat capacity of CsNi0.9Fe0.1Cl3, measured
with the quasi-adiabatic method, at zero field as C/T vs. T 2.
The full line is a fit of the temperature region above the phase
transition to C/T = a+ bT 2, the broken line is a fit of the low
temperature region to C/T = b′T 2.

Fitting the function

C = aT + bT 3 (5)

to the data above the phase transition yields a =
0.183 ± 0.005 J/(mol K2) and b = 3.02 × 10−3 ± 5 ×
10−5 J/(mol K4). The T -linear contribution to C can be
observed in pure and 2% Fe2+ doped CsNiCl3 as well. The
data for CsNiCl3 [17,18] and CsNi0.98Fe0.02Cl3 [19] coin-
cide perfectly outside the critical region. From the data of
Asano et al. [19] we extract a = 0.179±0.005 J/(mol K2).
Hence, within the error bars, the linear contribution does
not change between the pure, the 2% and the 10% Fe-
doped compound. The resulting limits for the intrachain
exchange of the 10% Fe-doped compound are 0.92 ≤
J(10% Fe)/J(pure) ≤ 1.03.
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4 Discussion

The critical field gBc = 4S
√
JD, the bounds of the ef-

fective J given by the linear part of the specific heat,
and J(pure)/kB = 16.6 K imply an easy-plane anisotropy
D/kB = (0.11± 0.03) K for CsNi0.9Fe0.1Cl3. This spread
of D is remarkably small, considering the huge difference
between the single ion anisotropies of Ni2+ and Fe2+,
DNi/kB = −0.047 K and DFe/kB = 14.8 K. Moreover,
the spread of the effective D does not increase from 2% to
10% doping.

The increase of the Néel temperature in spite of a
rather large doping concentration is puzzling, one would
rather expect a decrease of TN due to the enhanced dis-
order. As TN ∝

√
JJ ′, the increased zero-field ordering

temperature implies an increase of either the effective in-
trachain exchange or the interchain interaction (or both).
However, the unchanged linear low-temperature part of
the specific heat capacity confirms that J could have in-
creased by at most 3% (error bar). With the limits of J
given by the error bars of the determined specific heat
slope, TN implies an increase of the effective interchain
interaction between 30% and 40%. With J ′(pure)/kB =
0.29 K we obtain J ′(10%Fe)/kB = (0.39 ± 0.04) K. Pos-
sible origins for this increase of TN and J ′ are discussed
further below.

The values of D and J ′ yield 0.07 < D/3J ′ < 0.12
which is still much smaller than 1. This should be com-
pared to 0.02 < D/3J ′ < 0.07 derived in the same way
for the 2% doped compound. Hence the five times higher
Fe2+ doping increases D/3J ′ only by a factor of 2. With
D/3J ′ < 1 the phase diagram of CsNi0.9Fe0.1Cl3 like
CsNi0.98Fe0.02Cl3 is expected to be of the weak-anisotropy
case, in agreement with our observation. The observed
increase of D/3J ′ reduces the relative extension of the
umbrella phase which is expected to vanish entirely for
D/3J ′ = 1. However, the extension of the fan phase at
the cost of a part of the helix phase (cf. Fig. 7) and the
extreme broadening of the U-F transition are surprising,
in particular since the F-P transition remains remarkably
sharp, and the H-U transition does not broaden with re-
spect to the 2% compound. Of course, a general broaden-
ing of the phase transitions and a shift to lower tempera-
tures can be expected in a doped material, as the doping
may introduce disorder into the interchain and intrachain
interactions. However, one would expect that the disorder
affects all phase transitions. Therefore we need to under-
stand why the P-F transition is not only shifted to higher
temperatures than in pure CsNiCl3, but also remains re-
markably sharp and becomes even sharper with increas-
ing field, while the U-F transition is extremely broadened.
Table 1 summarizes the values for TN, Bc, J , J ′, D and
the ratio D/3J ′ for CsNi1−xFexCl3 for 0 ≤ x ≤ 1.

We will now consider several possible reasons for the
broadening of a phase transition which seem to be near
at hand, but can be shown to contradict some part of the
observations. Finally we propose an explanation which is
in agreement with all of our data, even with more subtle
details.

At a first glance one might assume that the broadening
of the U-F transition is caused by a large concentration
gradient or inhomogeneities across the sample. Regions
with larger D/3J ′ would have a lower U-F transition tem-
perature than regions with a smaller ratio. Variations of
the concentration would lead to a spread of D as well
as a spread of J ′. The spread of D has been estimated
above from the width of the H-U transition. The spread
of J ′ should become visible at the P-F transition which
is remarkably sharp. The specific heat data at 12 T pro-
vide an upper boundary of ±2% to such a spread of J ′.
Moreover, the influence of the spread of D and J ′ partly
cancels on the ratio D/3J ′, because regions with a high
concentration of Fe2+ imply a high value of D as well as
J ′, since both, TN and Bc increase with the concentration
of Fe2+. In order to get a somewhat more quantitative es-
timate for the width of the U-F phase transition due to
a concentration spread, we consider Tc(D/3J ′)/Tc(0) at
a given relative transition field, e.g. 2Bc. Tc(D/3J ′ = 0)
coincides with the P-F transition, which in turn can be
read of the phase diagram at 2% Fe, where no increase of
TP-F was observed. Together with Tc(D/3J ′ = 1) = 0 and
the two mean Tc(D/3J ′) values of the two different con-
centrations we have four data points to estimate the de-
pendence of Tc(D/3J ′)/Tc(0) on D/3J ′. Therefrom an ex-
pected transition width due to the spread of D/3J ′ can be
estimated. For the 2%-doped sample, the estimated spread
of Tc’s corresponding to the spread of D/3J ′ agrees within
a few percent with the experimentally observed width (the
shaded area in Fig. 7). For the 10% compound, however,
the experimentally observed width of the U-F transition
is 7 times larger than the estimated spread of Tc’s. This
calls for another physical origin of the width of the U-F
transition in the 10% Fe-doped compound.

Extreme broadening of phase transitions is known
from defects which create random fields and random
anisotropies, already at very low defect concentrations.
Dramatic influences of doping, leading to random fields
in an applied uniform field have been observed on the
Ising antiferromagnet Fe1−xZnxF2 [25]. Random crystal
field anisotropies lower and suppress the phase transi-
tions in e.g. DyP1−xVxO4 [26] very effectively, Tc drops by
30–50% for 10% defects.

Although we do not observe a drop of TN but an in-
crease upon doping, the possibility of random anisotropies
in CsNi1−xFexCl3 needs to be considered, because the
crystal field anisotropy of Fe2+ is strong and easy-plane
type, while that of Ni2+ is weak and Ising-type. The in-
fluence of random anisotropies should sensitively depend
on the Fe2+ concentration (cf. DyP1−xVxO4 [26]). The
H-U phase transition is the one which is most sensitive
to random anisotropy. This transition has a finite width,
Bc = (3.6±0.4) T. However, this width is still comparable
to the width of a spin-flop transition in a pure material (cf.
Bc = (1.9 ± 0.25) T in pure CsNiCl3 [27]). Furthermore,
the relative width of the H-U transition does not increase
at all from 2% (Bc = 2.3±0.5 T) to 10% doping. This gives
clear evidence, that the different crystal field anisotropies
are effectively averaged by the strong one-dimensional
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Table 1. Summary of the values found for CsNi1−xFexCl3 for 0 ≤ x ≤ 1.

CsNi1−xFexCl3 x TN (K) Bc (T) J (K) J ′ (K) D (K) D/3J ′

0 4.8, 4.4a 1.9± 0.25a 16.6 ± 0.4a 0.29 ± 0.03a −0.033 ± 0.03a −0.038 ± 0.03a

0.02 4.64b 2.3± 0.5b 16.6 ± 0.8 0.30 ± 0.04 0.045 ± 0.02 0.05 ± 0.02

0.1 5.3, 5.1 3.6± 0.4 16.6 ± 0.8 0.39 ± 0.04 0.11 ± 0.03 0.10 ± 0.02

1 – – −7.1a 1.9a 14.8a 2.57a

a Reference [1].
b Reference [7].

exchange interaction along the hexagonal axis, and ran-
dom anisotropy behaviour is suppressed.

Next, we speculate, whether a single isolated Fe2+, i.e.
with only Ni2+ as next neighbours, can act as a random-
field type defect through modified exchange interactions.
The defect in search which causes the extreme U-F broad-
ening of CsNi0.9Fe0.1Cl3 should affect the P-F transition
much less, and be consistent with the decreasing width of
the P-F transition with increasing field. If the single Fe2+

acted as a random field type defect, already the phase
transitions of the 2% Fe-doped sample should be lowered
and broadened compared to the pure compound, and an
increasing broadening with increasing field would be ex-
pected, contrary to the observation [7].

Nevertheless, we look into the exchange interactions in
the neighbourhood of an isolated Fe2+ in more detail.

The intrachain exchange depends on bond lengths and
bond angles, it is antiferromagnetic in CsNiCl3(J/kB =
16.6 K), while that of CsFeCl3 is ferromagnetic (J/kB =
−7.1 K). The Ni-Fe bond lengths and bond angles in
the doped compound can be expected somewhere be-
tween the corresponding values in CsNiCl3 and CsFeCl3.
Hence it does not appear probable that the Ni-Fe intra-
chain exchange is much stronger antiferromagnetic than
in CsNiCl3 nor that it is much stronger ferromagnetic
than in CsFeCl3. In any case, J(Ni-Fe) should be re-
flected in the effective J . For a crude estimate we may
assume that J(Fe-Fe) and J(Ni-Ni) have the values of
the respective pure compounds, and all interactions add
up linearly to an effective J . Then the error bars of the
effective J , determined from the linear part of C(T ),
confine this crude estimate of J(Ni-Fe) to the interval
0.64 ≤ J(Ni-Fe)/J(Ni-Ni) ≤ 1.25. This implies an anti-
ferromagnetic J(Ni-Fe).

A similar estimate based on the effective J ′ can be
performed for the Ni-Fe interchain interaction J ′(Ni-Fe),
using J ′(Ni-Ni)/kB = 0.29 K, J ′(Fe-Fe)/kB = 1.9 K of the
pure compounds. This yields 2.4 ≤ J ′(Ni-Fe)/J ′(Ni-Ni) ≤
2.9, again an antiferromagnetic interaction.

With J(Ni-Fe) and J ′(Ni-Fe) both antiferromagnetic
as the corresponding Ni-Ni interactions, a single Fe2+ spin
surrounded by Ni2+ at most generates small local distor-
tions of the spin structure. With other words, an isolated
Fe2+ leads to a weak magnetic bond dilution, but does
not act as a random field type disturbance.

These considerations confirm that an isolated Fe2+

cannot be the defect which leads to the immense broad-
ening of the U-F transition.

If we assume a statistical distribution of Fe2+, the
probability of Fe-Fe bonds cannot be neglected at 10%
doping. We expect that two such Fe2+ neighbours are cou-
pled as in CsFeCl3, i.e. ferromagnetically along the hexag-
onal axis and antiferromagnetically in the ab-plane. Hence
a Fe-neighbour pair in the ab-plane will again not act as a
random field type defect. To comprehend the influence of
a Fe2+ neighbour pair along the one-dimensional c-axis,
we first regard one single antiferromagnetic Ni-chain with
one ferromagnetically coupled Fe2+ neighbour pair. The
energy minimum of this chain is an arrangement where
the Fe-pair constitutes a domain wall with respect to anti-
ferromagnetic order along the chain. The staggered mag-
netization experiences a 180◦ phase slip at this domain
wall, its orientation reverses. Such a chain cannot be in-
corporated into the H or U phase without a competition
of interactions leading to entirely different preferred spin
directions around the defect pair. This disturbance has a
far-reaching influence, and constitutes a random-field type
defect.

In the F phase, however, only the spin components
along one axis are ordered. If the same chain with a one-
dimensional domain wall defect is inserted, it can be incor-
porated by local adaptions of the expectation value of the
staggered magnetization – the same Fe-pair defect does
not introduce local changes of the preferred spin direction
and hence does not act as a random field-type defect.

With the help of Figure 9 we wish to clarify the quali-
tative difference between a ferromagnetic Fe-pair defect in
the F phase and the H and U phases. Figure 9a illustrates
the spin orientation of the F structure in one hexagonal
plane. At c/2 higher or lower, all spins are reversed. Two
spins on a triangle are parallel. If one of these is flipped
by 180◦ (gray arrow), its new orientation remains well
adapted to the ordering direction of its neighbours, be-
cause the total energy can be minimized by length changes
of the ordered moments. This scenario holds for all spins
with “wrong” orientation in the entire reversed half-chain.
If instead the third spin was flipped, so that three spins on
a triangle become parallel (not shown), only one neighbour
on this triangle needs to follow the flip in order to achieve
an energy minimum similar to the previous one. A similar
arrangement can be performed for the whole half-chain
with the “false” orientation. In both cases, the resulting
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Fig. 9. Spin structures in the fan- (a) and the helixphase (b). The arrows indicate the ordering direction of the spins, respectively.
The gray arrow represents a spin with a preference direction which is flipped by 180◦ with respect to the ordering direction
given by the surrounding structure. Obviously, such a flipped spin is still reasonably well adapted in case of the fan phase, but
not at all in the helix or umbrella phases.

structure satisfies the local antiferromagnetic interchain
interactions on a triangle almost as well as without de-
fect, but contains a line defect (consisting of one or two
half-chains, respectively) with respect to the long-range
order. Figure 9b illustrates the same hexagonal plane in
the H phase. Obviously, the flipping of one spin requires a
far-reaching rearrangement of the spin directions in order
to achieve an energy minimum. The same problem occurs
in the U phase, which can be regarded as a distorted 120◦
structure perpendicular to the easy plane (not shown).

We think that the easy incorporation of ferromagnetic
Fe-pair defects into the F phase is responsible for the un-
expected sharpness of the P-F transition even at 10% dop-
ing concentration. At the phase boundary to the U or H
phases, however, these defects act as random field-type
disturbances. Consequently, these phase boundaries be-
come immensely broadened. Since the probability of such
Fe-pairs is still very small at 2% doping, the width of the
U-F transition is considerably smaller in that compound
and does not exceed the width of the P-F transition.

The robustness of the F phase to these Fe-pair de-
fects, which interfere severely with the order of the H
and U phases, may not only cause the broadening of the
U-F transition but also stabilize the F phase versus the H
phase. It may produce the observed relative extension of
the F phase at the cost of part of the H phase (Fig. 7) and
even be responsible for the small finite zero-field width of
the F phase. Nevertheless, alternative explanations should
be considered for the zero-field width of the F phase. Of
course pure CsNiCl3 also performs two zero-field transi-
tions (as in Fig. 1 left), but these are caused by the Ising
anisotropy and occur at lower temperatures (4.4 K and
4.8 K). A superposition of Ising and easy-plane behaviour
can be excluded, as only one transition, at 4.64 K, is
observed in the 2% doped compound [7]. In several un-
doped ABX3 compounds with easy-plane anisotropy, a fi-
nite width of the F phase at zero field is related to a dis-

tortion from the hexagonal symmetry, which leads to two
different values of the antiferromagnetic interchain inter-
actions on a triangle in the ab-plane. If CsNiCl3 was close
to such a structural distortion, local distortions could be
promoted by doping. However, it is difficult to imagine,
how a random distribution of impurities should lead to
a collective distortion. The stability of the F phase with
respect to ferromagnetic Fe-pair defects appears to be a
much more natural explanation.

In fact, ferromagnetically coupled Fe-pairs in chain
direction would also explain a number of other observa-
tions. We look again into the exchange interactions sur-
rounding a Fe-pair along c. The interchain interaction J ′

in hexagonal ABX3 compounds results from two almost
equivalent exchange paths J ′1 and J ′2 (Fig. 10). Due to the
strong intrachain exchange J along c, the spins are cou-
pled firmly into an antiferromagnetic order in c-direction.
As long as this antiferromagnetic order is perfect, the an-
tiferromagnetic exchange J ′1 of one spin with a neighbour
in the ab-plane will be almost cancelled by the antiferro-
magnetic exchange J ′2 to a spin in the same neighbouring
chain, but c/2 higher or lower. This frustration leads to
an almost vanishing effective J ′ � J ′1, J

′
2 in the model

Hamiltonian (1). With a ferromagnetic alignment of two
neighbouring spins along c the frustration of the interchain
exchange paths J ′1 and J ′2 to a common neighbour in an
adjacent chain is removed and the effective J ′ raises to the
order of J ′1 +J ′2. A dramatic increase of the effective inter-
chain interaction J ′ had already been observed on CsNiCl3
in high magnetic fields – ESR experiments [23] derive a 10
times larger interchain interaction from high-field exper-
iments than neutron diffraction from zero-field data [24].
This virtual field dependence of J ′ is believed to re-
sult from these two almost equivalent interchain exchange
paths which add their influence as soon as the magnetic
field is strong enough to tilt the spins against the intra-
chain exchange. Note that the effective antiferromagnetic
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Fig. 10. Exchange paths in CsNiCl3.

interchain interaction J ′ in CsFeCl3 (ferromagnetic along
the chain) is seven times larger than in CsNiCl3 which is
antiferromagnetic along the chain [1], in complete agree-
ment with these considerations. In this scenario, single
isolated Fe2+ spins, coupled antiferromagnetically to their
Ni-neighbours in c-direction, do not generate an increase
of the effective interchain interaction. This implies an en-
tirely homogeneous incorporation of isolated Fe-spins into
the ordered structures, and explains why all phase tran-
sitions of the 2% compound remain so surprisingly sharp,
with a Néel temperature which exactly coincides with the
mean of the two transition temperatures in CsNiCl3.

Ferromagnetically coupled Fe-pairs in c-direction,
however, remove the frustration of the surrounding J ′1, J

′
2

paths. With 10% Fe2+, about 2% Fe2+ occur in pairs
along the chain. If these pairs are coupled ferromagnet-
ically, about 4% of the interchain spin neighbour pairs
experience an enhanced interchain interaction. Assuming
a factor 10 enhancement of J ′ on the corresponding in-
terchain bonds due to a removed J ′1, J

′
2 frustration, the

average effective antiferromagnetic interchain interaction
J ′ indeed increases by 30–40%. With 2% Fe-doping, the
same considerations lead to only 1% increase of the ef-
fective interchain interaction, because adjacent Fe-pairs
along c are much less probable at lower concentration.
The corresponding expected increase of TN would be only
0.03 K, in agreement with the observation.

Moreover, the observed narrowing of the P-F transi-
tion towards higher magnetic fields is naturally explained
in this scenario. (The width of the P-F transition de-
creases by a factor of 6 between B = 0 and 10 T in the
2% compound, down to σ = 0.01 K [7], and the 10%
doped compound displays a similar narrowing, Fig. 2.)
With increasing field, all spins align more and more par-
allel to the magnetic field. The spin arrangement around
ferromagnetic defect pairs resembles more and more the

undisturbed structure. Hence the spread of effective J ′’s,
which depends on the spin alignment within the chains,
is reduced with increasing field (and vanishes entirely at
the saturation field) and correspondingly, the width of the
transition temperature decreases with increasing field.

Finally we think that the existence of ferromagnetic
Fe-spin pairs along the chain direction (coupled to the
chain by a non-vanishing J(Ni-Fe)) also explains the sign
changes of the MCE which were observed in the P and the
H phase.

In the P phase, where the temperature has overcome
the interchain interaction, the compound may be regarded
as an assembly of one-dimensional antiferromagnets. At
all magnetic fields, the Fe-spin pair orients parallel to the
magnetic field in order to minimize the magnetic energy
of the pair. The small magnetic energy of the antiferro-
magnetic rest of the chain is optimized with the spins
perpendicular to the field direction. At low fields, as long
as the magnetic energy difference between parallel and
perpendicular orientation of the antiferromagnetic chain
part is smaller than the intrachain interaction J(Ni-Fe),
all spins remain parallel and antiparallel to the field, and
the magnetization is entirely due to the ferromagnetic Fe-
spin pair. At higher magnetic fields, the antiferromag-
netic chain pieces orient perpendicular to the field, and
contribute to the magnetization by a small tilt into the
field direction. This spin-flop like change of the orientation
should affect ∂M/∂T from a ferromagnetic/paramagnetic
to the usual behaviour of one-dimensional antiferromag-
nets, i.e. from a negative to a positive sign, corresponding
to a positive sign of the MCE at low fields and a negative
sign at higher fields. This is indeed the experimental ob-
servation. Our interpretation is further supported by the
fact, that the sign change of the MCE at about 1.5 T is
independent of temperature up to the highest measured
temperatures.

In the H phase, with decreasing temperature, the spin
configuration must adapt better and better to the Fe-pair
defect in order to minimize the free energy. This leads to a
random orientation of the spins of the ferromagnetic Fe2+

pairs at zero field. Near these pair defects the magneti-
zation is not compensated. An increasing magnetic field
then tries to turn the Fe-pair spins into the field direction,
and the magnetization is at first mostly due to the ferro-
magnetic Fe-pair spins. Then, an increased temperature in
the H phase only reduces the local uniform magnetization
and again the compound shows a negative ∂M/∂T and a
positive MCE like a paramagnet or ferromagnet.

We emphasize that all these considerations do not de-
pend on a perfect parallel alignment of the Fe-spin neigh-
bour pair in the ordered phases and are therefore indepen-
dent of a precise knowledge of all exchange interactions.
As long as neighbouring Fe-spins along the hexagonal axis
experience a ferromagnetic exchange comparable to that
in CsFeCl3 and the intrachain exchange between Fe and
Ni is not zero but at least comparable to the interchain in-
teraction, the qualitative features are expected to remain
the same.
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5 Conclusion

We investigated CsNi0.9Fe0.1Cl3 by specific heat capacity
and magnetocaloric effect measurements. The combina-
tion of the two techniques, which can be performed with
essentially the same equipment, allows the determination
of the complete B-T phase diagram. Three very surpris-
ing results, the very different degree of broadening of the
phase boundaries, the decreasing width of the P-F phase
boundary with increasing field and the increase of the P-F
transition temperature in spite of a large doping concen-
tration can be explained by the existence of ferromagnet-
ically coupled Fe-spin pairs along the chain direction and
the consequent removal of frustration in the interchain
interactions. We emphasize that our findings cannot be
explained by a simple concentration gradient across the
sample. The ferromagnetic Fe-pair defects also seem to
be responsible for more subtle details in the caloric ex-
periments (like sign changes of the magnetocaloric effect
within one phase) and hence yield a consistent picture.
In this scenario, only Fe-pairs along the c-direction limit
the ordering process, while isolated Fe-spins are homo-
geneously incorporated into the ordered structures. This
explains on a microscopic basis, why the tuning of the
anisotropy with Fe-impurities is so successful at low dop-
ing concentrations. Since Fe-pairs along the hexagonal axis
represent random field type defects in two of the ordered
phases, it is the number of these pair defects which lim-
its the modeling of the anisotropy via doping with Fe2+.
Eventually the phase transitions will wash out entirely.
Hence our experiments and analysis reveal and explain the
potentials and limitations of a modelling of the anisotropy
of CsNiCl3 via Fe2+ impurities.
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