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Inelastic neutron and X-ray scattering experiments on surfaces and interfaces are a challenging topic in
modern physics. Particular interest arises regarding the surfaces and interfaces of soft matter and
biological systems. We review both neutron and X-ray spectroscopic techniques with a view to their
applicability to these samples. We discuss the different methods, namely neutron three-axis,
backscattering and spin-echo spectroscopy as well as X-ray photon correlation spectroscopy (XPCS),
in the context of planar lipid membrane models as an example. By a combination of the different
methods, a large range in momentum and energy transfer is accessible.
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1. Introduction

An outstanding problem of modern condensed matter physics relates to the question how

structure, thermodynamics, phase transitions and molecular motions change from the bulk

values when the spatial dimensions are reduced. In recent years, a growing interest has arisen

in studying dynamics at surfaces and interfaces in as large a range of time scales as possible.

While most spectroscopic techniques, such as nuclear magnetic resonance or dielectric

spectroscopy, are limited to the centre of the Brillouin zone and probe the macroscopic

response, neutron and X-ray scattering experiments give unique access to microscopic

dynamics at length scales of, e.g. intermolecular distances. To enlarge the Q–v range to a

maximum, several experimental techniques from neutron and X-ray scattering have to be

combined. By combining neutron three-axis or time-of-flight, backscattering and spin-echo

spectrometers, an energy range from about 50meV (thermal three-axis or time-of-flight)

down to sub-meV (spin-echo), corresponding to timescales from about 0.1 ps to 100 ns, is

accessible. X-ray photon correlation spectroscopy (XPCS) even extends this range down to

the neV range and beyond (detectable motions slower than about 50 ns).

Neutron scattering gives access to length scales ranging from intermolecular distances of

about 3 Å up to several hundred Å. Topics of interest are for instance the glass transition at
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the surface, the test of theoretical predictions derived from continuum mechanics, polymer

surface dynamics or the dynamics of biological model systems such as planar lipid

membranes. To solve these issues, several experimental challenges have to be met: the

weakness of the inelastic signals necessitates a sample preparation and experimental set-up

specially adapted for inelastic experiments. In this paper, we focus on the application of

different inelastic scattering techniques to the study of lipid membranes as prominent

examples of low dimensional systems. The understanding of dynamics in these model

membranes is of fundamental interest in biophysics.

2. Lipid membranes

Phospholipid membranes are intensively studied as simple model systems to understand

fundamental structural and physical aspects of their much more complex biological

counterparts [1]. Dynamical properties are often less well understood in biomolecular

systems, but are important for many fundamental biomaterial properties, e.g. elasticity

properties and interaction forces. Lipid membrane dynamics on small molecular length

scales for instance determine, or strongly affect, functional aspects like diffusion and parallel

or perpendicular transport through a bilayer. Here, we discuss inelastic neutron scattering

studies of the collective motions of the acyl-chains on different length and time scales.

Molecular vibrations, conformational dynamics and “one particle” diffusion in the plane of

the bilayer can be studied by a number of different spectroscopic techniques covering a range

of different time scales such as incoherent inelastic neutron scattering or nuclear magnetic

resonance or dielectric spectroscopy. In comparison, only a few experimental techniques,

namely coherent inelastic neutron scattering or inelastic X-ray scattering, are able to

elucidate the short range collective motions mentioned above.

Because of the weakness of the inelastically scattered signals, the preparation of

appropriate samples and experimental set-ups is challenging. For the neutron three-axis,

backscattering and spin-echo experiments with beam sizes of several centimeters and almost

negligible absorption, solid-supported membranes were prepared. As a high purity model

system the zwitterionic phospholipid dimyristoyl-phosphatidylcholine (DMPC) was chosen

[2]. Figure 1(a) shows a sketch of the sample preparation. Up to 20 Si-wafers, each of them

Figure 1. (a) Sketch of the sample preparation; (b) photograph of the “sandwich sample” used for the neutron
experiments; (c) By selective deuteration, the collective motions of the acyl tails are enhanced over other
contributions to the inelastic scattering section; and (d) Schematic of the humidity can that allows controlling
temperature and humidity of the bilayers.
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coated with multi-lamellar stacks of lipid bilayers and separated by small air gaps, were

combined for the neutron measurements and aligned with respect to each other to create a

“sandwich sample” consisting of several thousands of highly oriented lipid bilayers (total

mosaicity of about 0.68), with a total mass of up to 500 mg of deuterated DMPC, figure 1(b)

shows a photograph of the sample. By selective deuteration of the acyl-chains (figure 1(c)),

the respective collective motions are strongly enhanced over other contributions to the

inelastic scattering cross section. The samples were kept in a closed temperature and

humidity controlled aluminum chamber during the measurements (figure 1(d)). The fully

hydrated, deuterated DMPC bilayers undergo a phase transition (“main transition”) from the

more ordered gel phase into the fluid phase at 21.58C. Of particular interest are measurements

in the physiologically relevant fluid phase.

3. Three-axis spectroscopy

The concept of three-axis spectrometry has been very successful in the investigation of

collective excitations in condensed matter physics, i.e. phonons and magnons in crystals but

has so far not been applied to lipid membranes. Figure 2(a) shows a schematic of a three-axis

spectrometer. By varying the three axes of the instrument, the axes of rotation of the

monochromator, the sample and the analyzer, the wave vectors ki and kf and the energies Ei

and Ef of the incident and the scattered beam, respectively, can be determined. Q, the

momentum transfer to the sample and the energy transfer, v, are then defined by the laws of

momentum and energy conservation toQ ¼ kf 2 ki and v ¼ Ei 2 Ef. The accessible (Q, v)

range of the IN12 triple axis instrument at the ILL for a fixed energy of the scattered beam Ef

of 10meV is shown in figure 2(b) and covers the Q–v range of the excitations in membrane

systems well. It is only limited by the range of incident neutron energies offered by the

neutron guide as well as by mechanical restrictions of the spectrometer. The instrumental

energy resolution in this configuration is D ¼ 500meV.

The combination of cold and thermal neutrons makes accessible an excitation spectrum

from about 0.5 up to 50 meV. The use of highly oriented membrane stacks allowed us to

perfectly align the scattering vector Q with respect to the lipid bilayers. Q can be placed in

the plane of the membranes to measure static in-plane correlations, S(Qr), or in-plane

dynamics, S(Qr , v). By rotating the sample by 908,Q can be set perpendicular to the bilayers

to probe inter-lamellar correlations to determine, e.g. the inter-lamellar spacing and the

thickness of the water layer. Three-axis spectrometry thus offers the possibility of measuring

Figure 2. (a) Schematic of a three-axis spectrometer (taken from http://www.physics.uc.edu/); and (b) The
accessible Q–v range for a typical configuration (fixed Ef ¼ 10meV) is hatched.
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reflectivity, S(Qr) and in-plane dynamics, S(Qr,v), on the same instrument in the same run

without changing setup [3,4]. This is an invaluable advantage since the thermodynamic state

of the lipid bilayer not only depends on temperature and relative humidity, but also on

cooling and heating rates, preparation and thermal history.

A typical energy scan is shown in figure 3(b). The data were collected at T ¼ 208C, in the

gel phase of the bilayer at Q ¼ 1.0 Å21. The inset shows the excitations of the bilayer in the

gel and the fluid phase in magnification. Position and width can easily be determined from

these well-pronounced peaks. Figure 3(c) shows the dispersion relation in the gel and the

fluid phase as measured by several constant Q-scans.

The particular shape of the dispersion relation resembles typical dispersions found in

fluids and can qualitatively be explained. The basic scenario is the following: at small Qr,

longitudinal sound waves in the plane of the bilayer are probed and give rise to a linear

increase of v , Qr, saturating at some maximum value (“maxon”), before a pronounced

minimum v0 (“roton”) is observed atQ0 ø 1.4 Å21, the first maximum in the static structure

factor S(Qr) (the inter-chain correlation peak). Qualitatively, this can be understood if Q0 is

interpreted as the quasi-Brillouin zone of a two-dimensional liquid (the lipid molecules

arrange themselves on a two-dimensional hexagonal packed lattice). Collective modes with a

wavelength of the average nearest neighbour distance 2p/Q0 are energetically favourable and

lead to the minimum. In perfectly ordered systems (such as crystals), the energy of the

acoustic phonon branches goes down to zero at the zone centres. The static and dynamic

disorder in the lipid bilayers finally leads to a minimum at finite energy values.

At Qr values well above the minimum, the dispersion relation is dominated by single

particle behaviour. The dispersion relation can be extracted from molecular dynamics (MD)

simulations by temporal and spatial Fourier transforming the molecular real space

coordinates [5] and shows excellent agreement. While the “maxon” and the high-Q range are

Figure 3. (a) Orientation of the bilayers with respect to the spectrometer; (b) energy scan in the gel phase of DMPC
(T ¼ 208C), measured atQr ¼ 1.0 Å21. The scattering is composed of the central elastic peak, the broad quasi-elastic
background and symmetric satellites. The inset shows a zoom of the satellite peaks in both gel and fluid phase at
T ¼ 308C; and (c) dispersion relations in the gel and the fluid phase of the DMPC bilayer as measured by several
constant Q scans. (From [3]).
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energetically higher in the gel than in the fluid phase due to stiffer coupling between the lipid

chains in all-trans configuration, V0, the energy value in the dispersion minimum, is actually

smaller in the gel phase, roughly analogous to soft modes in crystals.

The range at low-Q-values is difficult to access by inelastic neutron scattering because of

the kinetic restriction, i.e. the dispersion relation of the neutron itself. This restriction does

not hold for inelastic X-ray scattering; the “dispersion” of a photon is a straight line with an

extremely steep gradient.

4. Neutron backscattering spectroscopy

In backscattering experiments, the scattering function S(Q,v) is directly measured

analogously to three-axis spectroscopy, but contrarily to XPCS or neutron spin-echo (NSE).

The high resolution obtained

Dl

l
¼

Dd

d
þ

Du

tan u
ð1Þ

in exact backscattering is easily shown by computing the first derivative of Bragg’s law

(equation (1)) [6], where l is the neutron wavelength, d the monochromator crystal lattice

spacing and Q the angle of incidence of the neutron beam with respect to the crystal surface.

From this equation, it becomes clear that the monochromaticity is maximized when the

angle of incidence is 908 with respect to the monochromator and analyzer crystal surface of a

spectrometer. This geometry can be realized with neutrons by using adequate deflecting

disk chopper devices, whereas for X-rays a perfect backscattering setup can only be

approximated. For neutrons, exact backscattering was first realized at the spectrometer IN16

at the ILL [7].

Neutron backscattering spectrometers typically consist of both a backscattering

monochromator and a backscattering analyzer sphere (see figure 4). The detectors are

mounted very close to the sample and the discrimination between analyzed neutrons and

neutrons directly scattered into the detectors is achieved by their time-of-flight. Therefore,

the incident beam is pulsed by a chopper (not shown in figure 4). Taking advantage of the

relatively large wavelength provided by cold neutrons, the ratio Dl/l is particularly

favourable and thus with the backscattering technique a Gaussian energy resolution of

0.9meV FHWM can routinely be achieved and a resolution of 0.45meV FHWM is possible

at a reduced intensity.

Using the backscattering technique, two basic types of measurements can be performed:

with fixed energy-window scans centred at zero energy transfer (FEW-scans), the scattered

intensity arising from the sample which is elastic within the instrumental resolution can be

recorded as a function of the sample temperature. From FEW-scans, information on the onset

and type of molecular mobility in the sample can be inferred. The second type of

measurement is the energy transfer scan. In backscattering, the energy transfer can be

scanned by varying the incident energy. This is done by Doppler-shifting the incident neutron

energy through an adequate movement of the monochromator crystal. Hereby, an incident

neutron energy shift of about 215meV , DE , þ15meV relative to the incident neutron

energy can routinely be scanned, with the energy transfer limit only given by the mechanical

limit of moving the monochromator crystal sufficiently fast. These energy scans correspond

to a time range of motion in the sample down to a few nanoseconds. The energy transfer

range can be increased to several hundred meV by using a heatable monochromator crystal

instead of a mechanically moving crystal. This setup is available at IN10 at the ILL.
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In view at its convoluted geometry, the use of the neutron backscattering technique for

probing dynamics at interfaces is challenging. Nevertheless, we have demonstrated the

feasibility of backscattering on the lipid membrane sandwich samples [8]. Analogously to the

three-axis experiments, we have oriented the samples in the spectrometer to measure at wave

vector transfers parallel and perpendicular to the lipid membrane plane, respectively (see

figure 4).

The broad lipid acyl-chain correlation peak that occurs at Qr ø 1.4 Å21 was (mainly)

detected in one detector tube (”lipid detector”). A Q-range of 0.3 Å21 , Q , 1.9 Å21 was

simultaneously detected in this set-up to investigate and discriminate molecular dynamics on

the different length scales.

FEW scans were performed in a temperature range of 100–315 K to map out the transition

of the lipids from immobile to mobile as a function of temperature for (a) the scattering

vector Q placed in the plane of the membranes and (b) perpendicular to the bilayers. While

the in-plane component (Qr) in the “lipid-detector” shows a pronounced freezing transition

(figure 5(a)), there is no distinct T-dependence in the perpendicular direction (Qz). We

interpret this in terms of correlated motions, which take place mainly in the plane of the lipid

bilayers (in the time and length scales observed). We attribute the pronounced freezing step

(”immobile” within the resolution window) at 294K (Q centred at 1.42 Å21) to the main

transition of the lipid acyl-chains from the rigid gel phase at low-T into the fluid phase at

higher temperatures. When analysing all detectors, we find a second transition at about

271K, mainly in the detector centred atQ ¼ 1.85 Å21, which tentatively might be attributed

Figure 4. Schematic of the backscattering geometry at IN10. Spatially arranged analyzers allow to separately but
simultaneously probe the molecular dynamics at different length scales. In our example, the inter-acyl-chain
correlation peak in the plane of the membranes is located at 1.4 Å21 (the heavy water correlation peak would occur
at 2 Å21).
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to the hydration water of the membrane stacks, i.e. the water layer in between the stacked

membranes. Even though the detector is not perfectly centred on the maximum of the static

structure factor of water at Q ¼ 2 Å21 (which is not accessible on IN10), it is positioned to

detect a reasonable part of the broad heavy water correlation peak. Within this interpretation,

freezing of the hydration water would be lowered by about 68 as compared to (heavy) bulk

water at about 277 K. Figure 5(b) displays corresponding energy transfer scans taken at three

different temperatures, for T ¼ 250, 290 and 300K with a typical counting time of about 9 h

per temperature. An elastic peak in the inelastic spectra points to static order at the

corresponding length scales, where a fluid system has no order at infinitely long time scales.

Even within the very limited statistics, the different dynamics is clearly visible: while the

lipid acyl-chains melt between 290 and 300K, melting at the water position already occurs

between 250 and 290K.

Our experiment gives a first high energy-resolution wave vector-resolved insight into

collective lipid membrane dynamics. The dynamical properties of hydration water may be

different from those of bulk water because hydrogen bonding to the lipid head groups at

the lipid–water interface of the membrane might slow down water rotation and translation.

A scenario with gradual freezing of the water molecules, depending on the distance to the

water–lipid interface, is also under discussion.

Further measurements and data analysis are in progress and with this technique the melting

temperatures of the lipid layers and the membrane water will be mapped out. In addition,

further experiments will focus on whether the melting is accompanied by a quasi-elastic

broadening. This would be an indication of whether or not phase or glass transitions are

present in this system.

5. Neutron spin-echo spectroscopy

NSE is a clever way of reaching very high energy resolution with neutrons close to 1025 of

the incoming neutron energy without sacrificing intensity [9]. With the latest development in

instrumentation [10,11], the gap between photon correlation spectroscopy (X-ray and visible

light) is getting smaller and smaller. Offering the possibility to cover the dynamics in systems

Figure 5. (a) In-plane component of the elastic scattering signal. The mobile-immobile transition (within the
resolution window) is clearly different for the lipid acyl-chains (T ¼ 294K) and the position of the water correlation
peak (T ¼ 271K). Solid lines are guides to the eye; and (b) energy scans at temperatures T ¼ 250, 290 and 300K for
the Q-values 1.42 Å21 (lipid acyl-chain correlation peak) and Q ¼ 1.85 Å21. At 290 K, the water signal is already
“mobile” within the experimental energy resolution whereas the lipid acyl-chains are still frozen. (Counting is
normalized to monitor).
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over 5–7 decades in space (Q range) as well as in energy (time space) unavoidably leads us

to a more complete description of the physical systems.

With NSE the directly measured quantity is S(Q, t)/S(Q, 0), that is we measure directly the

time dependence. Here

t/ l3

ð
B dl ð2Þ

B is the magnetic field of the precession coils and the integral is taken over the coil length.

Usually the magnetic field is varied to cover the time range we are interested in. It is

important to note the strong dependence of the time parameter with the wavelength.

Essentially the limiting factor for the maximum reachable Fourier time is due to the residual

field inhomogeneities [12], nevertheless choosing longer wavelengths still extends the time

range. Long wavelength has a second benefit for surface studies. In reflection, the angles we

are dealing with become bigger for a givenQ value, thus the sample size to cover the usually

large neutron beam (usually in the cm range) is smaller. Presently, there exists no dedicated

NSE spectrometer for reflectivity studies. The experiment we will describe in the following

[14] was performed on the IN15 NSE spectrometer at the ILL. The sample was a smectic

liquid crystal 4-octyl-40-cyanobiphenyl (8CB) with the C8H17 chain deuterated to enhance

the neutron contrast.

The repeat distance of the smectic layers leads to a sharp diffraction peak at

Qz ¼ 0.18 Å21. With 9.4 Å incoming neutron wavelengths this corresponds to 16.88

scattering angle. The film dynamics is expected to be seen only ifQ has a component parallel

to the film (q’). As the NSE spectrometer uses a not too tightly monochromatic beam

(Dl=l ¼ 11% FWHM) but a relatively tight angular collimation (about 0.58), the most

convenient way to move off the Bragg peak is to rotate the sample. With the 16.88 scattering

angle, we could easily rotate the sample ^58 without obscuring the incoming or outgoing

beams. On figure 6, the scattering geometry is represented with the sample turned horizontal

for better visibility [13].

IN15 has a 2D detector, thus the in-plane q’ component can be calculated as follows:

q’ ¼
2p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðDwÞ cos

q0

2
þ Dc2 v

� �
2 cos

q0

2
þ v

� �� �2

þðsinðDwÞÞ2

s
; ð3Þ

Figure 6. Sketch of the spin-echo scattering geometry.
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where q0 is the scattering angle, v is the sample rotation and Dc;Dw are angles which

correspond to the pixel positions on the 2D detector relative to the centre. Typical NSE decay

curves are shown in figure 7. The q’ ¼ 0 curve corresponds to the Bragg peak and within the

instrument resolution it is elastic. All the other curves could be well described with a

stretched exponential with b ¼ 0.6 exponent. Taking into account the bending elasticity of

the film [13,19], NSE measurements extend the Q range to a new regime of previous XPCS

results with good agreement with theory (figure 8). Surely, new experiments will follow in

the fast expanding field of surfaces and interfaces.

Maybe some words should be said on possible pitfalls concerning NSE experiments. In

fact, some kind of elastic scatterer is always measured to calibrate the instrument resolution.

As we measure S(Q, t) directly, the deconvolution of the instrumental resolution in v-space,

becomes a simple division. Different neutron trajectories explore slightly different field

integrals, thus leading to finite instrumental resolution. Special care has to be taken that the

elastic scatterer mimics as closely as possible the scattering profile and geometry of the real

sample. Indeed, the unusually long sample and thin slits introduce very specific correlations

between positions and trajectories, which can give artefacts which sometimes very much

look like real effects.

A closer look on the NSE curves shown above reveals that the Bragg peak, while very

close to 1.0, is not quite within the error bars. After different trials, for the resolution

measurement we used a strongly scattering grafoil piece placed exactly where the film was,

in the same sample holder with the same slits. The only difference which remained, was that

the sharp Bragg peak from the sample actually remonochromates the beam better than the

Figure 7. NSE decay curves for different q’-values.

Figure 8. Experimental relaxation times for samples of 8CB. Squares: NSE at wavelength of 0.9 nm; triangles:
NSE at 1.5 nm; diamonds: XPCS at 0.09 nm for two membrane thicknesses; and solid line: calculated dispersion
curves [14].
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original 15% monochromatization. Such effects are particularly dangerous on the side of

strong peaks. In our case when the sample was rotated at least 18, the Bragg peak moved off

the 2D detector and the scattered intensity was more uniform. þ and 2 rotation gave also

identical results, thus we are rather confident that artefacts are at most, somewhat smaller

than the deviation of the NSE curve from 1.0 on the Bragg peak.

6. X-ray photon correlation spectroscopy

For only a few years, it has become possible to study lateral dynamics at surfaces in the most

direct and unambiguous way using XPCS [15,16,17,20]. XPCS requires (partially) coherent

X-rays which are only available at the most advanced synchrotron sources. The basic idea of

XPCS is to record the intensity autocorrelation of the speckles visible in coherently

illuminated matter. This can be done with an excellent wave vector resolution. In measuring

the intensity correlation in time, XPCS somewhat resembles the neutron spin-echo technique

in that the intermediate scattering function S(Q, t) rather than S(Q, v) is accessed. Surface

XPCS takes advantage of the critical angle for total external reflection for X-rays impinging

through vacuum or air onto a surface which is greater than zero (see figure 9). Therefore, it is

Figure 9. Schematic of the XPCS set-up for surface scattering and sketched theoretical curve of a single
exponential decay as expected in the intensity autocorrelation from a simple relaxational motion.
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possible to illuminate surfaces under grazing angles of incidence and to detect a scattering

pattern arising from the near-surface region restricted by the 1/e-penetration depth of the

evanescent X-ray wave field.

Surface XPCS has the additional advantage that the available coherence volume is projected

onto the surface under grazing angles. Therefore, several hundred micrometers can be

coherently illuminated along a surface, even though the typical transverse coherence length at

8 keVat 3rd generation light sources is only of the order of 10mm. In addition to being surface

sensitive, XPCS has the advantage over visible laser light scattering that shorter length scales

may be probed and opaque materials may be studied. However, so far the promise of reaching

shorter length scales has been severely limited by the photon count rate. Even at the most

brilliant sources available today the maximum attainable wave vector transfer is restricted by

the limited coherent flux. In addition, there is a fundamental limit regarding the shortest

attainable time scales using XPCS. This limit is caused by the intrinsic time structure of the

electron bunches within any synchrotron storage ring and is of the order of a few nanoseconds.

Furthermore, because the inelastic or quasi-elastic processes in the sample are recorded

through the intensity autocorrelation function, the minimum intensity that is required to obtain

meaningful data is essentially proportional to the frequency to be detected in the sample.

Recently, some of the present authors have performed a first experiment using coherent X-

ray radiation at the Troı̈ka 1 beam line of the ESRF to study solid-supported lipid membranes

(DMPC) as well as charged surfactant bilayers [18,19]. The original idea was to probe

collective membrane dynamics on mesoscopic length scales, such as undulation modes. Note

that much work in the literature has been dedicated to the analysis of elastic X-ray scattering

in terms of thermal diffuse scattering, without being able to directly evidence the

corresponding relaxation time scales. In contrast to the expected smooth scattering curve,

averaged out by the fluctuations, we have recorded a pronounced (static) speckle pattern in

the diffuse scattering when measuring with coherent X-ray beams. Static speckles were

observed at small to medium parallel momentum transfer accessible by scans in the plane of

incidence (rocking scan, detector scans), at positions corresponding to the diffuse Bragg

sheet where the multi-lamellar stack dominates the signal.

On the other hand, the curves recorded over a range of higher parallel momentum transfer

out of the plane of incidence were smooth. This finding might be explained if we assume that

in the small Q regime, the diffuse signal stems predominantly from static defects and domain

scattering, while at high-Q, the signal of truly dynamic thermal disorder prevails, which

would average out the speckle pattern in time to a continuous curve. However, other effects,

such as substrate interactions and geometrical effects [20] may also have to be taken into

account. At the same time, we were not able to record an XPCS signal in the high-Q range,

possibly because the dynamics were too fast and the photon count rate too small. This

conclusion is supported by numerical estimations based on smectic hydrodynamics, which

predicts a strong increase of the frequency at high-Q. Contrarily, free-standing films also

exhibit much slower acoustic modes, which correspond to centre of mass movement of the

whole film [14]. In smectic films or multi-lamellar membranes deposited on solid surfaces,

the low-Q acoustic modes are suppressed by the boundary conditions of the flat substrate.

The present work points out a caveat for the X-ray line shape analysis of smectic systems

from which the membrane elasticity is deduced. Contrarily, inelastic neutron experiments do

not suffer from this limitation, since they probe the inelastically scattered neutrons directly

and therefore separate out the elastic scattering. In view of these limits in time scale and

competing elastic scattering, it is clearly worth further developing of neutron-based

instruments and methods to apply inelastic and quasi-elastic neutron scattering to surfaces

and interfaces. To this end, collective undulations and bending motions of lipid membranes

probed by spin-echo (see previous section) present an encouraging example.
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7. Conclusion

In summary, we have illustrated the potential relevance of inelastic scattering techniques to

study dynamics of surfaces and interfaces, taking the example of planar lipid membranes.

The combination of the different technique-neutron three-axis, backscattering and spin-echo

spectroscopy, as well as XPCS-maximizes the accessible Q–v range covering nine decades

in energy transfer and spatial dimensions from intermolecular distances to several hundred

mm. The dynamics in biomimetic membranes is of particular interest in membrane

biophysics to better understand the highly complex dynamics of biological membranes. An

understanding of membrane dynamics can also be useful to tailor membrane properties for

biotechnology applications.
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