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PACS. 64.60.Cn – Order-disorder transformations; statistical mechanics of model systems.
PACS. 64.70.Pf – Glass transitions.
PACS. 77.22.Ch – Permittivity (dielectric function).

Abstract. – The dielectric permittivity of methanol-β-quinol clathrates has been studied as a
function of temperature, frequency and methanol concentration. Higher concentrated samples
undergo a first-order antiferroelectric transition, lower concentrated ones are established as
dipole glasses. The main structural motif are ferroelectric chains, respectively chain segments.
The largely different strength of the intrachain and the interchain coupling, the frustration
leading to the glass state, and the relaxational dynamics are interpreted in terms of the dipole-
dipole interaction in combination with the rhombohedral symmetry of the host lattice.

Glassy disorder and freezing is a major challenge to condensed matter physics. The dipole
glasses [1], mixed crystals in which electric dipole moments freeze into a state without long-
range order, are hoped to mediate between the real glasses and the disordered magnetic
systems called spin glasses [2]. Indeed the dipole glasses share the complex distribution of
relaxation times [3–7] and the fact that freezing involves atomic positions with the real glasses.
On the other hand, both the dipole and the spin glasses rely on the quenched substitutional
disorder of a mixed crystal and it is suggestive to consider the orientational degrees of free-
dom of the electric and magnetic dipole moments equivalent. Nevertheless the application of
the well-established spin glass models to dipole glasses is problematic. What is the reason?
Popular examples of dipole glasses are Rb1−x(NH4)xH2PO4 [3], a member of the KDP family,
and cubic perovskites, such as K1−xLixTaO3 [4]. The dipole moments originate from the
displacements of the protons along the O—H · · ·O bonds and from the off-center position of
the Li-ion, respectively. However, these atoms also participate in the bonding of the crystal.
Therefore the distinction between the elementary dipole moments and a background lattice
is difficult. The bare moments resulting from the displacement of these atoms are dressed
by polarization and strain clouds of the lattice and the interaction between the effective mo-
ments is rather complex due to lattice-mediated contributions. This is presumably the major
reason why studies on dipole glasses usually concentrate on the phenomenology of the glassy
relaxations rather than on the microscopic interactions.
An electric-dipole glass suitable for a microscopic description in terms of spin glass mod-

els [2] should consist of well-defined dipoles which occupy the nodes of a rigid lattice sta-
tistically and are coupled by a well-defined interaction. We will establish the methanol-β-
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Table I – The phase transition temperature Ts, the intrachain Jc and the interchain J⊥ coupling
parameter, and the Arrhenius barrier EA (all in units of K) as a function of the methanol occupancy x.

x 0.97(±0.02) 0.84 0.79 0.73 0.50 0.40

Ts 63.9(±0.1) 50.3 45.2 − − −
Jc 195(±5) 175 176 155 121 111

J⊥ −0.3(±0.2) −1.6 −2.2 −3.2 −6.1 −7.5
EA 848(±15) 833 830 831 820 815

hydrochinon clathrate as a dipole glass which gets close to this situation. Accordingly the
emphasis of our work is on the interactions, but we will also give some comments on the
relaxations.
In the β-modification the quinol (HO-C6H4-OH) molecules form a H-bonded rhombohedral

R3̄ lattice with about spherical cavities, one per unit cell [8]. The methanol guest molecules
residing in these cavities are bound to the quinol host lattice by weak dispersion forces only.
Therefore, they can reorient relatively freely and the dipole moment is that of the free molecule
(µ = 1.69D). From the local C3i symmetry of the cavity center one expects a set of 6 equiv-
alent orientations [9] of the dipole moment. At 65 K the methanol clathrate shows a phase
transition in which the dipole moments order collectively [10, 11]. Similar phase transitions
have been observed for other dipolar guest molecules. The transition temperatures Ts were
found to scale with µ2 [12], suggesting that the dominant coupling between the guest molecules
is the electrostatic dipole-dipole (EDD) interaction. The host lattice tolerates methanol con-
centrations x as low as 0.35 without collapsing. Thus the effect of random site occupation on
electric ordering and glassy freezing and the crossover between these two cases can be studied.
We have investigated a series of six single crystals with different methanol concentrations (see
table I).
The three higher concentrated samples, x > xc, show conventional ordering via a first-order

phase transition, whereas the others, x < xc, freeze into dipole glasses, xc
∼= 0.76. The complex

dielectric permittivity ε(T, f) has been measured with the electric field applied parallel (εc)
and perpendicular (εa) to the threefold symmetry axis. The measuring frequencies f span
a range from 100 Hz to 1 MHz for the higher and from 0.01 Hz to 1 MHz for the lower
concentrated samples. Figures 1 and 2 show such data on εc for the samples with the highest
and the lowest concentration.
In contrast to εc, εa is weakly temperature dependent only, with maximum values (varying

between 5 and 5.5 for the different samples) being only slightly larger than ε∞ (between 3.8
and 4.2). Our complementary X-ray diffraction experiments show that the low-T phase of the
x = 0.97 sample is not R3 ferroelectric, as stated previously [11], but rather antiferroelectric
triclinic without a global threefold symmetry and accordingly with three orientation states.
The structure basically consists of ferroelectric chains running along c which are arranged
in sheets of alternating sign, as evidenced by superlattice reflections and presumed previ-
ously [13]. The dielectric data of all samples show primary relaxations in εc at temperatures
comparable to the transition temperatures of the ordering samples and secondary relaxations
in εa at lower T around 20 K. εc is significantly larger than εa, indicating that it is mainly the
c-component of µ, µc, which is involved in the primary relaxations and the ordering process,
whereas the perpendicular component is involved in the secondary relaxations. Figure 3 shows
the temperature dependence of the static permittivity εcs along c.
In the regime of dispersion, values of εcs have been obtained at discrete temperatures from
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Fig. 1 Fig. 2

Fig. 1 – The permittivity along c and the loss angle for x = 0.97 as a function of temperature for a
series of measuring frequencies.

Fig. 2 – The real ε′ and imaginary ε′′ part of the permittivity along c for x = 0.40 as a function of
the measuring frequency f and the temperature as parameter. The temperatures range from 31.7 K
(left) to 58.4 K (right) in steps which are equidistant on a 1/T -scale. Solid lines are fits of the KWW
relaxation law.

the analysis of the f -dependence in terms of the relaxation models of Havriliak-Negami and
Kohlrausch-Williams-Watts (KWW). εcs shows strong deviations from the Curie-Weiss law
already at 250 K. The behavior of εcs(T ) at higher T is well described by the susceptibility
of the one-dimensional (1D) Ising model with a coupling Jc to the next neighbors within the
chains and an interchain interaction J⊥ which is treated in mean-field approximation [14]. The
fit of the model to the data (fig. 3) yields the intra- and the inter-chain coupling constants (see
table I). The values of Jc and J⊥ for x = 0.97 are in reasonable agreement with calculations
of the EDD interaction for fully occupied chains. At lower T , εcs(T ) deviates from the Ising-
behavior and finally decreases with decreasing T , indicating the onset of 3D antiferroelectric
interchain correlations. For the higher concentrated samples, these correlations eventually
lead to the antiferroelectric phase transition at Ts, where both εc and εa drop to lower values.
The drop is rather sharp not only for the practically fully concentrated x = 0.97 sample but
also for x = 0.84 and 0.79. This means that the transition is not smeared out by a variation
of the methanol concentration across the samples, but that the methanol molecules occupy
the lattice sites statistically.
For x = 0.97, J⊥ is about three orders of magnitude smaller than Jc. This extremely 1D

behavior is not so much due to largely different distances d [8] of intrachain neighbors (two at
d1 = c = 5.6 Å) and interchain neighbors (six at d2 = 9.6 Å and six at d2′ = 10.1 Å), but is a
peculiarity of the EDD interaction in combination with the lattice symmetry. The ferroelectric
interactions along the chain add up, while the interactions to adjacent chains cancel each
other almost perfectly due to the triangular symmetry. The already small remainder of the
antiferroelectric interchain interaction decreases with the increasing ferroelectric correlation
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Fig. 3 – The static permittivity εcs − ε∞ along c as a function of T for all samples investigated.
The discrete data points of the dispersion regime have been derived from the analysis of relaxational
models, the data points at higher temperatures form quasicontinuous curves which coincide almost
perfectly with fits based on the quasi-1D Ising model.

along the chains. The correlation length along the chains x can be estimated from Jc, (ξ/c)2 =
0.25 exp[4Jc/T ], thus ξ increases on cooling, reaching values of some hundreds in units of c
before eventually the 3D antiferroelectric correlations develop. The weak interchain coupling
enhanced by a high 1D order along the chains shifts the phase transition of isolated chains from
T = 0 to a 3D ordering temperature Ts which is much higher than J⊥, Ts = |J⊥| exp[2Jc/Ts].
With decreasing occupation x, Ts shifts to lower T more quickly than expected for the mean-
field case Ts(x) = xTs(x = 1).
For x < 0.79, the phase transition is no longer observed. Even down to the lowest x

investigated, the 1D Ising model with a coupling to the next neighbors of a fully occupied
chain combined with mean-field interchain interactions supplies an excellent description of
the permittivity data at higher T . In fact, the extension of this model to chains with a small
percentage of vacancies [15] cannot describe the data. The effective intrachain interaction Jc

decreases with x, but not as fast as xJc(x = 1). We attribute this to the long (but not
infinite) range of the EDD interaction. Obviously the ferroelectric correlations are not cut
off by an empty cavity, which would be the case if the intrachain coupling were restricted
to first neighbors [15]. Surprisingly enough, the interchain interaction J⊥ on the other hand
increases significantly with decreasing occupancy. In the fully occupied system the main part
of the interchain interaction was cancelled by the threefold symmetry. If this compensation
is destroyed by empty cavities, the effective, mean-field interchain interaction J⊥ becomes
larger. It also becomes larger with decreasing ferroelectric correlation along the chains due to
the dipolar nature of the interaction. J⊥ is however still very much smaller than the intrachain
coupling Jc. Hence the increase of J⊥ with decreasing occupancy cannot compensate the
decrease of Jc, with the consequence that eventually 3D ordering is suppressed. We imagine the
partially occupied system as consisting of chain segments of ferroelectrically correlated dipoles.
The interchain interaction is then always of the antiferroelectric type, but its strength and the
preference direction of the dipoles depend on the length of the segments and relative position
of these segments on the chains. This must lead to significant frustration in a rhombohedral
lattice. While Ts of the long-range ordered system is given by the Fourier transform of the
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interactions at the ordering wave vector, a glass transition is expected at a temperature Tg

which corresponds to the mean interaction per bond. Because of the compensation of the
interchain interactions in the ordered phase, Tg for x slightly below xc could be even higher
than Ts for x slightly above xc.
The frequency dependence of the complex permittivity has been analyzed. We refer to

the results obtained with the KWW model, which is the model with the smallest number
of free parameters, namely the average relaxation time τ and the stretching exponent α.
Fits of this model to the ε′c and ε′′c data are nevertheless of excellent quality. See fig. 2 for
x = 0.40. Results on τ(T ) and α(T ) are of course only available in the T -range in which 1/τ is
comparable to the measuring frequency f . For the almost fully occupied sample, x = 0.97, the
relaxations of the paraelectric phase are close to the Debye case with a narrow τ -distribution.
α decreases with decreasing T and with decreasing x without any apparent change of the
behavior at xc . For the samples with x < xc, for which the relaxational behavior is not
interrupted by the phase transition, data are available down to about 30 K. Here α ≈ 0.5,
which is indicative of the broad τ -distribution which —in combination with the absence of
long-range ordering— is usually regarded as the main piece of evidence for glassy freezing.
For x = 0.40, the large width of the τ -distribution at lower T is also directly apparent from
fig. 2. The T -dependence of τ follows the Arrhenius law, 1/τ = f0 exp[−EA/T ] rather than
the Vogel-Fulcher law 1/τ = f0 exp[−EA/(T −Tvf)]. The values for the energy barrier EA are
included in the table, the values of the attempt frequency f0 are around 20 GHz. Arrhenius
laws with similar values of EA and f0 are also obtained for the loci of f, T -combinations
taken at different relative heights δ of the dispersion step of ε′c. This method, the so-called
δ-plot, probes a weighed τ -distribution, the weight of the slow relaxations increases with
increasing δ [3]. Other dipole glasses [3–7] have τ -distributions of similar width but there are
examples [6, 7] for which the Arrhenius law for the average relaxation time changes over to
the Vogel-Fulcher law in the long-τ tail of the distribution. The present results suggest that
all parts of the relaxation spectrum obey the Arrhenius law.
The knowledge of the coupling parameters allows an insight into the origin of the re-

laxations. The dynamics of the 1D Ising chain [16] and of the quasi-1D Ising system with
mean-field interchain coupling [17] have been described in the literature. Because of the small-
ness of J⊥, we can safely refer to the pure 1D case [16]. For Jc/T > 1 the relaxation time is
given approximately by τ = τloc exp[4Jc/T ]. Here τloc is the relaxation time of an individual
dipole in the thermal bath decoupled from the other dipoles. We think of these relaxations
in terms of flips of µc in the crystal field of the cavity, the relaxation time being given by
τloc = τ0,loc exp[Eloc/T ], where Eloc is the barrier for such flips. Hence the effective barrier
EA from above decomposes into EA ≈ Eloc + 4Jc. The values of EA and Jc (see table I)
suggest that for x = 0.97, EA is mainly due to the dipolar coupling Jc, leaving only about
70 K for the local crystal field barrier Eloc. The height of the local barrier increases with
decreasing occupancy. For x = 0.40, Eloc is about 370 K and supplies about one half of the
total barrier. Obviously the cavities are distorted by vacancies in neighboring cavities. Such
effects have to be classified as fields, as random fields since they depend on the occupation
statistics, a quenched variable, rather than on the orientations of the neighboring dipoles.
In this sense the freezing of the low-concentrated samples is about half way between a local
freezing in random fields and collective spin-glass–like freezing due to random interactions.
The freezing of the glassy sample with x = 0.73 is however dominated by random interactions
(Eloc ≈ 210K, 4Jc ≈ 620K) and should be therefore close to spin-glass–like.
In summary, we have shown that the long-range dipolar ordering of the β-quinol methanol

clathrates, the size of the interactions and their change with the occupancy as well as the re-
laxational dynamics which at lower occupancies lead to glass-like low-T state can be explained
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by the peculiar properties of the dipole-dipole interaction in this rhombohedral lattice. The
clathrates would be highly suited for computer simulations, which could start almost from
first principles. Thus the clathrates could contribute to a microscopic understanding of the
dipole glass state on a level comparable to what has been achieved in the best examples of spin
glass systems. They may also contribute to the understanding of disordered dipolar magnetic
system [18] such as frozen ferrofluids.
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