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28 CHAPTER 2. BOUNDARY-VALUE PROBLEMS IN ELECTROSTATICS: 1

2.23 A Hollow Cubical Conductor

a. The Potential inside the Cube

a X

Figure 2.9: A hollow cube, with all sides but z=0 and z=a grounded.

Ve =0
Separating the variables:
1d*X 1d°Y 1d*°Z
5 tTo55+t-5-5 =0
X dz? Y dy? 7 dz?

x and y can vary independently so each term must be equal to a constant —a?:

1 d2X
¥ T3 +a®>=0 = X = Acosaz + Bsinaz
1 d%Y
?d—yQ + 52 =0 = Y = CcosBy+ DsinfBy
1d*Z .
Ve + 72 =0 = Z = Esinh(yz) + Fcosh(vyz),

where 72 = o2 + 2. The boundary conditions determine the constants:

®(0,y,2) =0 = A=0

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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®(a,y,2) =0 = a,=nr/a (n=1,2,3,...)
®(2,0,2) =0 = C=0
O(z,a,2)=0 = B =mn/a (m=1,23,..)
=  Ypm =7V n2+m?2
The solution is thus reduced to
> . nmwry\ . mmy . Ynm?~ Ynm~Z
)= 55 o (P () i (22 s o (2] o
(z,y,2) n;:1S1n — )sin{— sin " + cos " (2.58)

Now, let’s use the last boundary conditions to find the coefficients A,,m and B,m. The top and
bottom of the cube are held at a constant potential V,, so

®(z,y,0) =V, = i Bimsin (?) sin (m;ry) (2.59)
nm=1

This means that By, are merely the coefficients of a double Fourier series (see for instance [1] on

Fourier series):
4 ; a a
By = Z / / sin (@)sm (@) dzdy (2.60)
a 0 0 a a

It can be easily shown that the individual integrals in equation (2.60) are zero for even integer
values and % for n is odd. Thus B,,m is

16V,
Bym = ——— for odd (n,m) (2.61)

m2nm

The top of the cube is also at constant potential V., so

(I)(I,y,()) = V= (I)('Tay7a’) A
Bum = Aumsinh(Yum) + Bumcosh(v,m) <
1 - h nm
A — p, Locosh(mm) (2.62)
sinh(Ypm )
Substituting the expressions for A, and By, into equation (2.58), gives us
16V, ~~ 1 . nmay . omryy [1—cosh(Yum) . . (Fnm?
B(z,y,z) = —sin (22 ) sin () | — b ()
(:82) m? n rgdd nmSHl a S a sinh (Ynm) o
+ cosh (%mz)} ; (2.63)
a

where vum = TVn2 + m2.
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b. The Potential at the Center of the Cube

The potential at the center of the cube is

a a a 16V, — 1 . /nmN . /mmy [1—cosh(vam) . Ynm
3= S (e (1) [ ()
(2 2 2) 2 . ;dd nm st 2 sl 2 sinh (Ynm) St 2
+ cosh (%Tm)} (2.64)
With just n,m = 1, the potential at the center is

16V, |1 — h(v/2
OV | 1=cos (V2m) o <i> + cosh <l> ~ 0347546V, (2.65)
™ sinh(v/27) V2 V2

When we add the two terms (n =3, m = 1) and (n = 1, m = 3), the potential is 0.332498V,.

c. The Surface Charge Density

The surface charge density on the top surface of the cube is given by

d
o= —eog—z (2.66)

a

In the appendix it is shown that the differentiation of the hyperbolic sine is the hyperbolic cosine.
Furthermore

dcosh(az)
dz
Using this equality in differentiating the expression for the potential in equation (2.63), we get

o 1 z - nm . . 1- h nm nm
8_ = 6V; Z Tnm in (_mr:c) sin (mwy) - cosh(y )cosh (’Y Z)
0z w2 = mma a a sinh (Ynm) a

= asinh(az) (2.67)

+ sinh (7"77)] : (2.68)

where v, = 7vn? +m2. Now we evaluate this expression for z = a:
0P

0= —€)=—

0z

zZ=a

00
16eV, Z Ynm . (MTT\ .
— 3 Sin | — ) SIn
Vs nma a
n,m odd

oo
16eV, Z Yrm . (MTT\ .
— 3 —SIin { —— ) Sin
T nma a

n,m odd

(mwy) [1 — cosh(Ynm)

a sinh ("Ynm) cosh ('Vnm) sinh ('Ynm)} N

(mwy
a

) [(1 = cosh(Ynm))coth(ynm) + sinh (Ym)] (2.69)

Further simplification??





